Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Горбунов Алект ТВС «Санкт-Петербургский университет ГПС МЧС России» Должность: Заместитель начальника университета по учебной работе Дата подписания: 09.07.2025 10:00:30

Уникальный программный ключ:

286e49ee1471d400cc1f45539d51ed7bbf0e9cc7

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Специалитет по специальности 21.05.04 Горное дело Направленность (профиль) «Технологическая безопасность и горноспасательное дело»

1. Цели и задачи дисциплины

Цель освоения дисциплины:

- формирование целостного мировоззрения и развитие системноэволюционного стиля мышления;
- формирование системы знаний как фундаментальной базы инженерной подготовки;
- формирование навыков по грамотному применению электротехнических приборов и электрооборудования;
- приобретение обучающимися знаний, необходимых для понимания физических процессов, происходящих в электрических цепях, принципов действия электрических машин, электронных устройств и приборов.

В процессе освоения дисциплины «Электротехника и электроника» обучающийся формирует и демонстрирует нормативно заданные компетенции, приведенные в таблице 1.

Перечень компетенций, формируемых в процессе изучения дисциплины

Компетенции	Содержание					
УК-1	Способен осуществлять критический анализ проблемных ситуаций на					
	основе системного подхода, вырабатывать стратегию действий					
УК-2	Способен управлять проектом на всех этапах его жизненного цикла					
ОПК-15	Способен в составе творческих коллективов и самостоятельно,					
	контролировать соответствие проектов требованиям стандартов,					
	техническим условиям и документам промышленной безопасности,					
	разрабатывать, согласовывать и утверждать в установленном порядке					
	технические и методические документы, регламентирующие порядок,					
	качество и безопасность выполнения горных, горностроительных и					
	взрывных работ					

Задачи дисциплины:

- изучение основных законов электрических и магнитных цепей, устройств принципа действия электроизмерительных приборов, электрооборудования и электронных приборов;
- овладение методами расчёта электрических цепей постоянного и переменного тока, методикой расчёта трёхфазных систем при соединении потребителей «звездой» и «треугольником»;
- формирование представление о применимости трансформаторов, электрических машин, электронных приборов и устройств.

2. Перечень планируемых результатов обучения дисциплины, соотнесенных с индикаторами достижения компетенций

Индикаторы достижения компетенции	Планируемые результаты по дисциплине
УК-1.1. Знает принципы сбора, отбора и	Знает модели процессов, явлений для
обобщения информации, методики	оценки достоверности построенных
системного подхода для решения	моделей с использованием современных
профессиональных задач.	методов и средств анализа информации
ук-1.2 Умеет анализировать и	Умеет разрабатывать и реализовывать
систематизировать разнородные данные,	мероприятия по совершенствованию и
оценивать эффективность процедур анализа	повышению технического уровня горного
проблем и принятия решений в	производства, обеспечению
профессиональной деятельности.	конкурентоспособности организации в
	современных экономических условиях.
УК-1.3. Владеет навыками научного поиска	Владеет навыками проведения
и практической работы с	сертификационных испытаний
информационными источниками; методами	(исследований) качества продукции горного
принятия решений.	предприятия, используемого оборудования,
	материалов и технологических процессов
УК-2.1. Знает необходимые для	Знает инженерные методы расчета
осуществления профессиональной	надежных в работе, экономичных в
деятельности правовые нормы и	изготовлении и эксплуатации машин и
методологические основы принятия	сооружений
управленческого решения.	
УК-2.2. Умеет анализировать	Умеет производить инженерные расчеты по
альтернативные варианты решений для	разработке электрических схем, используя
достижения намеченных результатов;	пакеты прикладных программ для решения
разрабатывать план, определять целевые	задач с помощью персональных ЭВМ
этапы и основные направления работ.	
УК-2.3. Владеет методиками разработки	Владеет навыками использования методов
цели и задач проекта; методами оценки	измерения электрических параметров
продолжительности и стоимости проекта, а	электросетей
также потребности в ресурсах.	
ОПК-15.1. Знает требования стандартов,	Знает требования нормативной
технических условий и документов	документации по электробезопасности
промышленной безопасности	V
ОПК-15.2. Умеет разрабатывать,	Умеет использовать проектную
согласовывать и утверждать в	документацию в своей деятельности при
установленном порядке технические и	разработке, согласовании и утверждении
методические документы,	его электротехнической части
регламентирующие порядок, качество и	
безопасность выполнения горных,	
горностроительных и взрывных работ	Dualitati Many Wayay aayaama amaa a
ОПК-15.3. Владеет навыками в составе	Владеет навыками самостоятельно так в
творческих коллективов и самостоятельно,	составе коллектива контролировать
контролировать соответствие проектов	соответствие проекта, его

требованиям стандартов, техническим	электротехнической части.
условиям и документам промышленной	
безопасности, разрабатывать,	
согласовывать и утверждать в	
установленном порядке технические и	
методические документы,	
регламентирующие порядок, качество и	
безопасность выполнения горных,	
горностроительных и взрывных работ	

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к обязательной части основной профессиональной образовательной программы специалитета по специальности 21.05.04 «Горное дело», направленность (профиль) «Технологическая безопасность и горноспасательное дело».

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

4.1 Распределение трудоемкости дисциплины по видам работ по семестрам для очной формы обучения

Виды учебной работы		Трудоемкость			
		час.	по		
Виды ученни расоты			семестрам		
			5		
Общая трудоемкость дисциплины по учебному плану	3	108	108		
Контактная работа		54	54		
Лекции		18	18		
Практические занятия		18	18		
Лабораторные работы		18	18		
Консультация перед экзаменом					
Самостоятельная работа		54	54		
Курсовая работа (проект)					
Зачёт					
Зачёт с оценкой		+	+		
Экзамен					

4.2. Тематический план, структурированный по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий для очной формы обучения

	Номер и наименование тем		Количество часов по видам занятий				ая	
№ п/п		Всего часов	Лекции	Практические занятия	Лабораторные работы	Консультации	Контроль	Самостоятельная работа
1	2	3	4	5	6	7	8	9
	5	семест	p					
1.	Тема 1. Электрический ток	18	4	4				10
2.	Тема 2. Электрические измерения	24	4		12			8
3.	Тема 3. Типовое электротехническое оборудование	14		8				6
4.	Тема 4. Полупроводниковые, электронные, ионные приборы	52	10	6	6			30
	Курсовая работа (проект)							
	Зачёт							
	Зачёт с оценкой						+	
	Экзамен							
	Итого	108	18	18	18		+	54

4.3 Содержание дисциплины для очной формы обучения

Тема 1. Электрический ток

Лекция. Постоянный электрический ток: получение и основные параметры. Электрическая цепь и ее элементы. Основные законы электрических цепей. Методы расчета электрических цепей постоянного тока. Соединение сопротивлений, источников тока. Тепловое действие

электрического тока. Переменный электрический ток: получение и основные параметры. Электрическая цепь и ее элементы. Основные законы электрических цепей.

Практическое занятие. Расчет электрических цепей постоянного тока. **Лекция.** Электрические цепи синусоидального переменного тока.

Практическое занятие. Трехфазные цепи при соединении потребителей «звездой» и «треугольником».

Самостоятельная работа: Эквивалентные преобразования в теории электрических цепей и их применение для расчета цепей. Расчет разветвленных электрических цепей. Синусоидальные токи и напряжения: основные понятия, определения и параметры. Формы представления синусоидальных электрических величин. Применение операций комплексными числами для расчета цепей переменного тока. Выполнение индивидуального задания №1 «Расчет однофазных цепей переменного тока». Трехфазные системы. Выполнение индивидуального задания № 2 «Расчет трехфазных цепей переменного тока» Электромагнетизм и магнитные цепи. Электромагнитные расчеты.

Рекомендуемая литература:

Основная [1];

Дополнительная [1,2].

Тема 2. Электрические измерения

Лекция. Электроизмерительные приборы.

Лекция. Измерение основных параметров электрических цепей.

Лабораторная работа № 1 Исследование разветвленной цепи постоянного тока.

Лабораторная работа № 2. Исследование цепей однофазного тока с последовательным соединением активного, индуктивного и емкостного сопротивлений.

Лабораторная работа № 3. Исследование цепей однофазного тока с параллельным соединением активного, индуктивного и емкостного сопротивлений.

Лабораторная работа № 4. Исследование цепей трехфазного тока при включении потребителей звездой.

Лабораторная работа №5. Исследование цепей трехфазного тока при включении потребителей треугольником.

Самостоятельная работа. Основные определения и классификация электроизмерительных приборов. Погрешности измерений Устройство и принцип действия электроизмерительных приборов.

Рекомендуемая литература:

Основная [1]; Дополнительная [1,2].

Тема 3. Типовое электротехническое оборудование

Практическое занятие. Трансформаторы переменного тока.

Назначение, классификация, принцип действия силовых трансформаторов.

Практическое занятие. Асинхронные двигатели.

Самостоятельная работа. Вращающееся магнитное поле и его практическое применение. Устройства и принцип работы синхронных машин. Назначение и принцип работы электроприводов, режимы их работы.

Рекомендуемая литература:

Основная [1];

Дополнительная [1,2].

Тема 4. Полупроводниковые, электронные, ионные приборы

Лекция. Полупроводниковые диоды.

Практическое занятие. Биполярные транзисторы.

Лабораторная работа № 6. Исследование полупроводниковых диодов и биполярных транзисторов.

Лекция. Характеристики усилительных каскадов.

Лекция. Электронные усилители.

Лабораторная работа № 7. Исследование усилителя на биполярном транзисторе.

Практическое занятие. Электронные генераторы.

Лабораторная работа № 8. Исследование генератора гармонических колебаний.

Лекция. Логические элементы в дискретном исполнении.

Лекция. Импульсные устройства.

Практическое занятие. Элементы блоков электрического питания.

Самостоятельная работа. Классификация и система обозначений полупроводниковых диодов И биполярных транзисторов. Полупроводниковые резисторы. Классификация и система обозначений транзисторов и тиристоров. Система обозначений индикаторных фотоэлектрических приборов. Классификация электронных усилителей. Стабилизация частоты электронных генераторов. Системы счисления. Триггеры. Цифровые интегральные микросхемы. Аналоговые интегральные микросхемы. Устройство принцип работы компенсационного И стабилизатора напряжения. Устройство и принцип работы электронных преобразователей напряжения.

Рекомендуемая литература:

Основная [1];

Дополнительная [1,2].

5. Методические рекомендации по организации изучения дисциплины

При реализации программы дисциплины основными видами учебных занятий являются лекции, практические занятия и лабораторные работы.

Лекции являются одним из важнейших видов учебных занятий и составляют основу теоретической подготовки обучающихся. Цели лекции:

- дать систематизированные научные знания по дисциплине, акцентировав внимание на наиболее сложных вопросах дисциплины;
- стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

Практические занятия, целями которых являются:

- совершенствование умений и навыков решения практических задач,
- освоение навыков заполнения и подготовки юридических документов (бланков).

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности путем решения ситуативных задач, составления служебных документов, отработки алгоритмов деятельности в типичных и нестандартных ситуациях.

Лабораторные работы, целью которых являются:

- глубокое изучение лекционного материала, изучение методов работы с учебной литературой, получение персональных консультаций у преподавателя;
- решение спектра практических задач, профессиональных (анализ производственных ситуаций, ситуационных задач и т. п.);
 - выполнение вычислений, расчётов;
- работа нормативными документами, инструктивными материалами, справочниками.

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях и других занятиях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям и промежуточной аттестации.

Промежуточная аттестация проводится в форме зачета с оценкой.

6. Оценочные материалы по дисциплине

Текущий контроль успеваемости обеспечивает оценивание хода освоения дисциплины, проводится в соответствии с содержанием дисциплины по видам занятий в форме решения задач и тестирования.

Промежуточная аттестация обеспечивает оценивание промежуточных и окончательных результатов обучения по дисциплине, проводится в форме зачета с оценкой.

6.1. Примерные оценочные материалы:

6.1.1. Текущего контроля

Типовые задачи:

- 1. Нарисуйте схему, определите величину и фазу тока в цепи при параллельном подключении сопротивлений $z_1=4+j5$ и $z_2=2-j7$ на напряжение $\sim 127B$.
- 2. Нарисуйте схему и определите активную, реактивную и полную мощность в цепи последовательным включением сопротивлений $Z_1 = 2 j3$ и $Z_2 = 3 + j$ и на напряжение ~220B.
- 3. Нарисуйте схему и определите активную, реактивную и полную мощность в цепи с параллельным включением сопротивлений $Z_1 = 3 + j4$ и $Z_2 = 2 j2$ на напряжение ~220B.
- 4. Нарисовать схему и определить ток и соѕ ϕ нагрузки однофазной цепи переменного тока 220 B, если в нее параллельно включены сопротивления $Z_1 = 7 j2$ и $Z_2 = 3 + j5$.
- 5. Определите номинальный момент трехфазного асинхронного двигателя, имеющего M_{max} = 24 H·м, $S_{\kappa p}$ = 11%, номинальную скорость вращения ротора n_2 = 1440 об/мин и скорость изменения магнитного поля статора n_1 = 1500 об/мин.
- 6. Определите полезный момент M_2 , развиваемый трехфазным асинхронным двигателем на валу при потребляемой двигателем мощности $P_1 = 3.0 \text{ kBt}$, $\eta = 0.78$, скорости вращения ротора $n_2 = 1425 \text{ об/мин}$.
- 7. Определите частоту тока в роторе f_2 трехфазного асинхронного двигателя, включенного в сеть переменного тока частотой $f_1 = 50\Gamma$ ц, если он имеет скорость вращения $n_2 = 2835$ об/мин при скорости изменения магнитного поля статора $n_1 = 3000$ об/мин.
- 8. Является ли цепь из резистора 120 кОм и конденсатора емкостью 100 пФ интегрирующей для импульса длительностью 100 мкс?
- 9. Определить, какова должна быть активное сопротивление схемы, чтобы добротность колебательного контура была равна 15 на частоте 30 МГц при емкости конденсатора 30 пФ.
- 10. Каково должно быть сопротивление резистора интегрирующей цепи при емкости конденсатора 120 пФ и длительности импульса 10 мкс?
- 11. Определить длительность импульса ждущего мультивибратора, если емкость конденсатора равна 3100пф, сопротивление резистора 150 кОм.

Типовые задания для тестирования:

- 1. Как ведет себя ток по отношению к напряжению в цепях переменного тока с чисто активным сопротивлением?
 - а) совпадает по фазе с напряжением;
 - б) отстает по фазе от напряжения;
 - в) опережает по фазе напряжение.
- 2. Как называется сопротивление цепи постоянного тока?
 - а) омическое.
 - б) реактивное;
 - в) активное.
- 3. На какое соединение трехфазной системы указывает данное выражение?

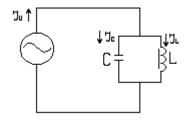
$$I_{\pi}=I_{\varphi};$$

$$U_{\pi} = \sqrt{3} U_{\phi}$$

- а) соединение потребителей системы звездой.
- б) соединение потребителей системы треугольником;
- 4. К чему приводит повышение коэффициента мощности?
- а) к уменьшению силы тока;
- б) к уменьшению потерь электрической энергии;
- в) к увеличению силы тока;
- г) к увеличению потерь электрической энергии.
- 5. Для какого соединения сопротивлений справедлива формула?

$$\mathbf{R}_{\scriptscriptstyle \mathsf{9KB}} = \frac{R_{\scriptscriptstyle 1} \cdot R_{\scriptscriptstyle 2}}{R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2}}$$

- а) для параллельного соединения;
- б) для последовательного соединения;
- в) для смешанного соединения.
- 6. В чем измеряется реактивная мощность?
- a) B·A_{p.}
- б) В;
- в) B·A;
- г) A;
- д) Вт.
- 7. При соединении потребителей звездой $U_{_{\rm I\! I}} = 380 {\rm B}$. Чему будет равно фазное напряжение?
- a) $U_{\phi} = 220B$;
- 6) $U_{\phi} = 127B$;
- **B)** $U_{\phi} = 380B$.
- 8. Что означает данное выражение?


$$\sum E = \sum IR$$

- а) баланс мощностей;
- б) первый закон Кирхгофа;
- в) второй закон Кирхгофа.

- 9. Место соединения трёх и более ветвей называется?
- а) узлом.
- б) контуром;
- в) вершиной.
- 10. При последовательном соединении конденсаторов как будет меняться $C_{\text{обш}}$?
- а) не меняться;
- б) уменьшаться;
- в) увеличиваться.
- 11. При каких условиях возникает резонанс токов?
- а) при параллельном соединении и выполнения условия $X_1 = X_C$.
- б) последовательном соединении элементов индуктивности и емкости;
- в) при параллельном соединении и выполнения условия $\mathbf{X}_{\mathcal{C}}\langle X_{\mathcal{L}};$
- г) при параллельном соединении и выполнения условия $X_L \neq X_C$.
- 12. Каким прибором измеряется сила тока?
- а) амперметром;
- б) мегомметром;
- в) ваттметром.
- 13. Какое должно быть сопротивление изоляции для силовых и осветительных проводов?
- а) не менее 0,5 МОм;
- б) не менее 1,5 МОм;
- в) не менее 2,0 МОм.
- 14. На какое соединение ёмкостей указывает данное выражение?

$$C_{\text{обш}} = C_1 + C_2 + \cdots + C_n$$

- а) параллельное;
- б) последовательное;
- в) смешанное.
- 15. Что произойдет с линейным напряжением $U_{\scriptscriptstyle \rm J}$ при обрыве одного линейного провода в соединении потребителей звездой с нулевым проводом?
- a) $U_{\pi} = U_{\phi}$.
- б) $U_{\pi} = 0$;
- в) $U_{\pi 1} = U_{\pi 2}$;
- 16. Для чего нужен нулевой провод в осветительных сетях?
- а) обеспечения равенства фазных напряжений;
- б) обеспечения равенства сопротивлений нагрузки;
- в) обеспечения равенства линейных токов.
- 17. Как ведет себя ток в индуктивной ветви данной цепи относительно напряжения?

- а) отстаёт по фазе;
- б) опережает по фазе;
- в) находится в противофазе;
- г) совпадает по фазе.
- 18. Что необходимо сделать для уменьшения пускового тока у асинхронного двигателя (АД)?
- а) запустить АД при соединении его обмоток звездой;
- б) уменьшить напряжение сети.
- в) запустить АД при соединении его обмоток треугольником;
- 19. Во сколько раз увеличивается потребляемая мощность при включении потребителей треугольником по сравнению с включение звездой?
- а) в 3 раза;
- б) в 2 раза;
- в) в $\sqrt{2}$ раз;
- г) в $\sqrt{3}$ раз.
- 20. Что происходит с величиной коэффициента мощности cos φ при параллельном включении ёмкости к асинхронному двигателю?
- а) увеличивается;
- б) уменьшается;
- в) не изменяется;
- 21. Что произойдет с сопротивлением конденсатора, если увеличить частоту переменного тока?
- а) сопротивление уменьшится;
- б) сопротивление увеличится;
- в) сопротивление не изменится;
- 22. Во сколько раз больше пусковой ток по сравнению с номинальным у АД с фазным ротором?
- a) $I_{II} = (2 \div 2.5) I_{H};$
- $6) I_{\Pi} = (9 \div 12)I_{H};$
- B) $I_{\Pi} = (4 \div 8)I_{H}$.
- 23. Для каких целей используют автотрансформатор?
- а) для изменения напряжения в небольших пределах;
- б) для расширения пределов измерения I; U;
- в) как обычный трансформатор.
- 24. С какой скоростью вращается ротор асинхронного двигателя (АД)?
- а) асинхронной;
- б) неодновременной.

- в) синхронной;
- г) одновременной;
- 25. Для чего предназначен трансформатор?
- а) для преобразования напряжения.
- б) для преобразования частоты;
- в) для преобразования мощности;
- 26. Какая должна быть скорость вращения ротора асинхронного двигателя (АД) относительно вращающегося поля статора?
- а) меньше частоты поля;
- б) равна частоте вращения поля;
- в) больше частоты вращения поля.
- 27. По какой из перечисленных формул можно вычислить коэффициент трансформации?
- a) $k = U_1/U_2$;
- $6) \gamma_{np} = \Delta A/A_{_H};$
- B) $n = I/I_a$;
- Γ) $R_{III} = R_A (n 1)$.
- 28. Достоинством усилительного каскада на транзисторе по схеме с общим эмиттером **ОЭ** является:
- а) большой коэффициент усиления по напряжению;
- б) большое входное сопротивление каскада;
- в) большое выходное сопротивление каскада.
- 29. Достоинством усилительного каскада на транзисторе по схеме с общей базой ОБ является:
- а) большое выходное сопротивление каскада;
- б) большой коэффициент усиления по напряжению;
- в) большое входное сопротивление каскада.
- 30. Какая из приведенных формул позволяет определить величину частоты f резонанса колебательного контура?
- а) $f = \frac{1}{2\pi\sqrt{LC}}$ где: L индуктивность катушки,
- С емкость конденсатора;
- б) $f = \sqrt{\frac{L}{C}}$ где: L индуктивность катушки,
- С емкость конденсатора;
- в) $f = \frac{\rho}{R}$ где: ρ волновое сопротивление,
- R омическое сопротивление.
- 31. При обратном включении сопротивление полупроводникового диода:
- а) значительное (несколько МОм);
- б) незначительное (несколько Ом);
- в) зависит от частоты.
- 32. Какая часть вольтамперной характеристики используется при работе стабилитронов?

- а) обратная;
- б) прямая;
- в) в зависимости от силы тока.

6.1.2. Промежуточной аттестации

Примерный перечень вопросов, выносимых на зачет с оценкой

- 1. Электрическая цепь и ее элементы: определение тока, сопротивления, проводимости, ветви, узла, контура, схемы, аналитические соотношения.
- 2. Соединения источников постоянного тока: электрические схемы, вывод аналитических соотношений.
- 3. Свойства цепей переменного тока с чисто активным сопротивлением: электрическая схема, вывод аналитических соотношений, графическое представление, практические примеры.
- 4. Свойства цепей переменного тока с индуктивностью: электрическая схема, вывод аналитических соотношений, графическое представление, практические примеры.
- 5. Свойства цепей переменного тока с емкостью: электрическая схема, вывод аналитических соотношений, графическое представление, практические примеры.
- 6. Трехфазный переменный ток: получение, основные параметры, графическое представление, преимущество трехфазного тока перед однофазным.
- 7. Устройство, принцип действия и область применения приборов электромагнитной и приборов магнитоэлектрической системы, достоинства и недостатки.
- 8. Устройство и принцип действия автотрансформаторов и трехфазных масляных трансформаторов, достоинства и недостатки, пожарная опасность.
- 9. Устройство и принцип действия однофазных и двухфазных асинхронных двигателей.
- 10. Назначение, классификация, устройство, принцип работы полупроводникового диода.
- 11. Назначение, классификация, устройство, принцип работы и область применения полупроводниковых биполярных транзисторов.
- 12. Назначение, классификация, устройство, принцип работы и область применения полупроводниковых полевых транзисторов.
- 13. Назначение, устройство, принцип работы LC электронных генераторов гармонических электрических сигналов.
- 14. Дифференцирующая цепь. Условия дифференцирования электрического импульса.
- 15. Интегрирующая цепь. Условия интегрирования электрического импульса.

- 16. Классификация, характеристики и области применения электронных усилителей.
- 17. Назначение, устройство и принципы работы логических схем И-НЕ и ИЛИ-НЕ.
- 18. Назначение, устройство и принцип работы автоколебательного мультивибратора на транзисторах.
- 19. Назначение, принципиальная схема, принцип работы и область применения двухполупериодного выпрямителя.
- 20. Назначение, устройство и принцип работы сглаживающих фильтров.

6.2. Шкала оценивания результатов промежуточной аттестации и критерии выставления оценок

Форма	Показатели	Критерии выставления оценок	Шкала оценивания
контроля	оценивания		
зачет с	правильность	дан правильный, полный ответ на	отлично
оценкой	и полнота	поставленный вопрос, показана	
	ответа	совокупность осознанных знаний	
		по дисциплине, доказательно	
		раскрыты основные положения	
		вопросов; могут быть допущены	
		недочеты, исправленные	
		самостоятельно в процессе ответа.	
		дан правильный, недостаточно	хорошо
		полный ответ на поставленный	
		вопрос, показано умение выделить	
		существенные и несущественные	
		признаки, причинно-следственные	
		связи; могут быть допущены	
		недочеты, исправленные с	
		помощью преподавателя.	
		дан недостаточно правильный и	удовлетворительно
		полный ответ; логика и	
		последовательность изложения	
		имеют нарушения; в ответе	
		отсутствуют выводы.	
		ответ представляет собой	неудовлетворительно
		разрозненные знания с	
		существенными ошибками по	
		вопросу; присутствуют	
		фрагментарность, нелогичность	
		изложения; дополнительные и	
		уточняющие вопросы не приводят	
		к коррекции ответа на вопрос.	

7. Ресурсное обеспечение дисциплины

7.1. Лицензионное и свободно распространяемое программное обеспечение

Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства:

- 1. Astra Linux Common Edition релиз Орел операционная система общего назначения. Лицензия №217800111-ore-2.12-client-6196
- 2. Astra Linux Special Edition операционная система общего назначения. Лицензия №217800111-alse-1.7-client-medium-x86 64-0-14545
- 3. Astra Linux Special Edition операционная система общего назначения. Лицензия №217800111-alse-1.7-client-medium-x86_64-0-14544
- 4. FASTMEAN 6.1 программа моделирования электрических цепей. Разработана специалистами Санкт-Петербургского государственного университета телекоммуникаций (СПбГУТ) им. проф. М.А. Бонч-Бруевича.

7.2. Профессиональные базы данных и информационные справочные системы

- 1. Портал открытых данных Российской Федерации https://data.gov.ru/ (свободный доступ);
- 2. Федеральный портал «Российское образование» http://www.edu.ru (свободный доступ);
- 3. Система официального опубликования правовых актов в электронном виде http://publication.pravo.gov.ru (свободный доступ);
- 4. Электронная библиотека университета http://elib.igps.ru (авторизованный доступ);
- 5. Электронно-библиотечная система «ЭБС IPR BOOKS» http://www.iprbookshop.ru (авторизованный доступ).
- 6. Электронно-библиотечная система "Лань" https://e.lanbook.com (авторизованный доступ).

7.3. Литература

Основная литература:

1. Григораш О.В. Электротехника и электроника: учебник для вузов: [гриф УМО] / О.В. Григораш, Г.А. Султанов, Д. А. Нормов. — Ростов н/Д: Феникс; Краснодар: Неоглори, 2008. — 464 с.: ил. — (Высшее образование). — ISBN 978-5-222-13949-3. - Текст: электронный // Электроннобиблиотечная система университета: [сайт]. - URL: http://elib.igps.ru/?84&type=card&cid=ALSFR-f8348fad-1f69-46bf-ba4f-92f2614a6099&remote=false

Дополнительная литература:

- 1. Электротехника: учебник для вузов / А.С. Касаткин, М.В. Немцов. 8-е изд., испр. М.: ACADEMIA, 2003. 539 с. URL: http://elib.igps.ru?&type=card&cid=ALSFR-5348a3af-8015-47ac-b8ea-7866e732d5da
- 2. Основы электроники: учебное пособие / С.В. Воронин, Н.П. Грачев, И.Л. Скрипник; ред. Э. Н. Чижиков; МЧС России. СПб.: СПбУ ГПС МЧС России, 2017. 212 с.- URL: http://elib.igps.ru/?116&type=card&cid=ALSFR-42054999-a584-46d1-9e97-c52995b8d4d2&remote=false

7.4. Материально-техническое обеспечение

Для проведения и обеспечения занятий используются помещения, которые представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой специалитета, оснащенные оборудованием и техническими средствами обучения: автоматизированное рабочее место преподавателя, маркерная доска, мультимедийный проектор, экран, наглядные пособия, иллюстрированные стенды, плакаты, компьютеры, посадочные места обучающихся.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде университета.

Для выполнения лабораторных работ используется типовой комплект учебного оборудования "Электрические цепи и основы электроники", исполнение стендовое компьютерное минимодульное, ЭЦиОЭ-СКМ.

Автор: кандидат технических наук, доцент Сергей Владимирович Воронин