Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Горбунов Александрович федеральное государственное бюджетное образовательное

Должность: Заместитель начальника университета по учебной работе Дата подписания: 27.08.2024 15:56:48 учреждение высшего образования

Уникальный программный ключ: «Санкт-Петербургский университет

286e49ee1471d400cc4f45539d51ed7hhf0e9cc7 противопожарной службы МЧС России»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «МАТЕРИАЛОВЕДЕНИЕ»

Специальность 21.05.04 «Горное дело»

Профиль Технологическая безопасность и горноспасательное дело

Уровень специалитета

Санкт-Петербург

1. Цели и задачи дисциплины «Материаловедение»

1.1 Целью дисциплины является формирование у обучающихся инженерных знаний и закономерностей, определяющих строение и свойства материалов в зависимости от их состава, технологии получения и условий обработки.

При изучении дисциплины основное внимание уделяется выработке навыков и умений использовать теорию в пожарно-прикладных задачах.

В процессе освоения дисциплины «Материаловедение» обучающийся формирует и демонстрирует нормативно заданные общепрофессиональные компетенции.

Перечень компетенций, формируемых в процессе изучения дисциплины «Материаловедение»

Компетенции	Содержание
ОПК- 14	Способен разрабатывать проектные инновационные решения
	по эксплуатационной разведке, добыче, переработке твердых
	полезных ископаемых, строительству и эксплуатации
	подземных объектов

1.2 Задачи дисциплины «Материаловедение»

- формирование представления об основных физико-механических свойствах конструкционных материалов, области их применения и основах производства заготовок, композиционных материалов, размерной обработки деталей.
- формирование умения проводить исследования механических свойств материалов по установленным методикам, оценивать структуру и предполагаемые свойства материалов, обосновывать режимы упрочнения, обработки, соединения, взаимозаменяемости для различных задач.
- формирование навыков использования полученных знаний при оценке надёжности аппаратов, конструкций, их элементов, при организации и проведении эксплуатации, технического обслуживания и ремонта пожарной и аварийно-спасательной техники.
- формирование навыков оценки и анализа целесообразности замены традиционных материалов инновационными, с целью уменьшения пожарных и техногенных рисков при эксплуатации техники.
- 2. Перечень планируемых результатов обучения дисциплины «Материаловедение», соотнесенных с планируемыми результатами освоения образовательной программы Перечень планируемых результатов обучения по дисциплины, соотнесенных с

планируемыми результатами освоения образовательной программы, представлен в таблице 2.

Таблица 2 - Планируемые задачи и результаты обучения

Индикаторы достижения компетенции	Планируемые результаты обучения по дисциплине				
Общепрофессиональная компетенция					
ОПК-14.1. Знает инновационные	Знает				
решения по эксплуатационной	Методики исследований механических				
разведке, добыче, переработке	свойств материалов.				
твердых полезных ископаемых,	Основные физические, химические,				
строительству и эксплуатации	механические и эксплуатационные				
подземных объектов.	свойства конструкционных				
	материалов.				
	Области применения				
	конструкционных материалов и				
	основы производства заготовок,				
	композиционных материалов,				
	размерной обработки деталей.				
ОПК-14.2. Умеет разрабатывать	Умеет				
проектные инновационные решения по	Применять методики исследования				
эксплуатационной разведке, добыче,	механических свойств материалов				
переработке твердых полезных	различной природы, используемые при				
ископаемых, строительству и	эксплуатационной разведке, добыче,				
эксплуатации подземных объектов.	переработке твердых полезных				
	ископаемых, строительству и				
	эксплуатации подземных объектов				
	Проводить исследования				
	механических свойств материалов по				
	установленным методикам.				
	Обосновывать режимы упрочнения				
	материалов с целью улучшения их				
	механических и эксплуатационных				
	свойств.				

3. Место дисциплины «Материаловедение» в структуре основной профессиональной образовательной программы (далее – ОПОП)

Дисциплина «Б1.Б.18 Материаловедение» относится к базовой части дисциплин. Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

Изучение учебной дисциплины опирается на другие дисциплины базового блока: «Б1.Б.07 Химия», «Б1.Б.06 Физика», «Б1.Б.20 Прикладная механика», «Б1.Б.21 Сопротивление материалов».

Учебная дисциплина «Материаловедение» становится фундаментальной основой изучения дисциплин: «Б1.Б.24 Горные машины и оборудование», «Б1.Б.27 Обогащение полезных ископаемых», «Б1.Б.42 Надёжность технических систем и техносферные риски».

4. Структура и содержание дисциплины «Материаловедение»

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 часов.

4.1 Объём учебной дисциплины и виды учебной работы

Dun vuoduoš nodom v	Васто надор	Семестры		
Вид учебной работы	Всего часов	5	6	
Общая трудоемкость дисциплины	180	72	108	
Общая трудоемкость дисциплины в				
зачетных единицах	5	2	3	
Контактная работа (в виде аудиторной	68	36	32	
работы)				
В том числе:				
Лекции	30	16	14	
Практические занятия	36	20	16	
Контроль (форма контроля - Зачет)		+		
Контроль (форма контроля - Экзамен)	36		36	
Консультация	2		2	
Самостоятельная работа	76	36	40	

4.2 Разделы дисциплины «Материаловедение» и виды занятий 3 курс, 5 семестр

			Коли	чество	часов п	о видам	1 занятий	
№ п/п	Наименование тем		лекции	лабораторные	практические	контроль	Самостоятельная работа	Примечание
1	2	3	4	5	6	7	8	19
1	Строение металлов и сплавов		2				4	
2	Металлы и сплавы		4		2		4	

3	Железо и его сплавы	12	2		4		4	
4	Цветные металлы и сплавы		2		4		6	
5	Термическая и химико-							
	термическая обработка	12	2		4		6	
	металлов							
6	Коррозия металлов и сплавов							
		8	2				6	
	Неметаллические и							
7	композиционные материалы	12	2		6		6	
Итого (5 семестр)		72	16	-	20	-	36	

3 курс, 6 семестр

No	Наименование тем	Всего часов	Количество часов по видам занятий				ьная работа	чание
п/п			лекции	л лабораторные	практические	контроль	Самостоятельная работа	Примечание
1	2	3	4	5	6	7	8	9
8	Основы металлургического производства.	12	2		4		4	
9	Основы порошковой металлургии.	8	2				6	
10	Литейное производство.	12	2		4		6	
11	Основы производства заготовок пластическим деформированием	8	2				6	
12	Производство неразъемных соединений деталей сваркой, пайкой и склеиванием		2		8		6	
13	Основы размерной обработки деталей.	8	2				6	
14	Производство и обработка неметаллических и композиционных материалов.		2				6	
Консультация		2				2		
Экзамен		36				36		
Итого (6 семестр)		108	14		16	36	40	
Итого по курсу		180	30	-	36	36	72	

4.3 Содержание учебной дисциплины «Материаловедение»

Раздел 1 Материаловедение

Тема 1. Строение металлов и сплавов

Цели и задачи дисциплины материаловедение - роль в подготовке инженера. Современные материалы в промышленности, технике и аппаратах, их причастность к пожарам, авариям и катастрофам.

Самостоятельная работа. Механические свойства металлов и сплавов. **Рекомендованная литература:**

основная: [1, 2, 3]; дополнительная: [1, 2, 3].

Тема 2. Металлы и сплавы

Атомно-кристаллическое строение металлов. Диффузионные процессы в металлах. Формирование структуры металлов. Дефекты строения металлов. Методы определения механические свойства металлов и сплавов.

Диаграмма сплава железо-углерод и её значение. Формирование структуры металлов. Влияние примесей на превращения в сплавах.

Практическое занятие: Основные способы определения механических свойств металлов.

Самостоятельная работа. Примеры применение металлов и сплавов в пожарной технике.

Рекомендованная литература:

основная: [1, 2, 3]; дополнительная: [1, 2, 3].

Тема 3. Железо и его сплавы

Структуры и основные свойства железа. Влияние температуры на структуру железа. Структурные составляющие железоуглеродистых сплавов. Диаграмма сплава железо-углерод и её практическое значение. Влияние примесей и легирующих элементов на температурные превращения железоуглеродистых сплавов. Стали и чугуны. Классификация сталей по химическому составу и назначению. Углеродистые конструкционные стали: классификация по качеству, их маркировка и область применения в технике.

Легированные стали: классификация, маркировка и область применения. Регулирование свойств легированных сталей изменением состава. Стали и специального назначения: жаропрочные, износостойкие, инструментальные и штамповочные. Химический состав, основные свойства и область применения. Химический состав твёрдых сплавов. Чугун: Классификация, основные свойства маркировка белого, И

высокопрочного чугуна. Влияние углерода на свойства чугунов. Область применения чугунов.

Практическое занятие: Классификация сталей, их маркировка и применение. Классификация чугунов, их маркировка и применение.

Рекомендованная литература:

```
основная: [1, 2, 3];
дополнительная: [1, 2, 3].
```

Тема 4. Цветные металлы и сплавы

Алюминий и алюминиевые сплавы: свойства, классификация, маркировка и область применения. Медь и сплавы на её основе: свойства, классификация, маркировка. Влияние легирующих элементов и примесей на свойства медных сплавов.

Магниевые и титановые сплавы. Классификация и маркировка. Основные свойства сплавов и область их применения.

Практическое занятие. Маркировка цветных металлов и сплавов.

Свойства цветных металлов и их сплавов. Исследование свойств цветных металлов и сплавов.

Самостоятельная работа. Применение сплавов из цветных металлов в технике.

Рекомендованная литература:

```
основная: [1, 2, 3];
дополнительная: [1, 2, 3].
```

Тема 5. Термическая и химико-термическая обработка металлов

Превращения в сталях при равновесном нагреве и охлаждении. Влияние температурного режима нагревания и охлаждения на превращения и свойства получаемых структур в сталях. Виды термообработки, их назначение и сущность. Выбор температурного режима термообработки. Термомеханическая обработка сталей. Понятие о термообработке цветных металлов и сплавов. Химико-термическая обработка, её виды, назначение, сущность и область применения. Диффузионное насыщение поверхности сплавов. Поверхностное упрочнение металлов и сплавов. Лазерная термическая и химико-термическая обработка.

Практическое занятие: Исследование свойств сталей до и после термообработки. Влияние термической и химико-термической обработки на свойства сталей. Термомеханическая обработка и поверхностное упрочнение деталей.

Самостоятельная работа. Примеры применения термической и химикотермической обработки.

Рекомендованная литература:

```
основная: [1, 2, 3];
дополнительная: [1, 2, 3].
```

Тема 6. Коррозия металлов и сплавов

Понятие о коррозии, её виды и формы коррозионных разрушений металлов и сплавов. Причины коррозии. Основные способов защиты металлов от коррозии, их краткая сущность и область применения.

Самостоятельная работа Процессы коррозии, протекающие на изделиях. Способы защиты от коррозии изделий. Виды коррозии.

Рекомендованная литература:

основная: [1, 2, 3];

дополнительная: [1, 2, 3].

Тема 7. Неметаллические и композиционные материалы.

Пластмассы: общие понятия о пластмассах, основные компоненты пластмасс и их назначение, классификация пластмасс в зависимости от наличия, количества и химической природы наполнителя, термопластичные и термореактивные пластмассы.

Резины: состав резиновых смесей, свойства резин, влияние условий эксплуатации на свойства резин.

Композиционные материалы: классификация по природе компонентов, по геометрии наполнителя и схеме его расположения, принципы и упрочнения. Методы определения прочности композиционных материалов.

Практическое занятие. Характеристика неметаллических и композиционных материалов. Применение неметаллических и композиционных материалов.

Самостоятельная работа. Композиционные материалы с керамической и полимерной матрицей.

Рекомендованная литература:

основная: [1, 2, 3];

дополнительная: [1, 2, 3].

Раздел 2 Технология материалов Тема 8. Основы металлургического производства

Производство чугуна: исходные материалы для производства чугуна, и их подготовка к плавке, доменная печь и её устройство, общие сведения о доменном процессе.

Практическое занятие. Производство стали: современные способы получения стали, их особенности и основные параметры процессов, способы повышения качества сталей. Основы производства алюминия и меди: исходные компоненты и общие сведения о технологическом процессе.

Самостоятельная работа. Производство никеля, цинка, титана.

Рекомендованная литература:

основная: [1, 2, 3];

дополнительная: [1, 2, 3].

Тема 9. Основы порошковой металлурги

Общие сведения о порошковой металлургии. Методы получения порошков и их подготовка. Основные физические, механические и химические свойства металлических порошков. Способы производства изделий из металлургических порошков: прессование, экструзия, прокатка, горячая штамповка и их краткая характеристика. Качество изделий.

Самостоятельная работа. Сравнительный анализ способов получения изделий из порошков. Анализ технологичности способов получения изделий из порошков. Области применения изделий из порошковых материалов.

Рекомендованная литература:

основная: [1, 2, 3];

дополнительная: [1, 2, 3].

Тема 10. Литейное производство.

Литейные свойства сплавов: жидко текучесть, усадка, ликвидация, газовая пористость. Технологические основы литейного производства. Получение заготовок методами литья. Классификация основных способов литья: литьё в песчаные формы, в оболочковые формы, литьё в кокиль, литьё под давлением, вакуумным всасыванием, центробежное, литьё полу непрерывное и непрерывное, электрошлаковое, их краткая сущность и особенности. Получение отливок методом направленной кристаллизации. Основные сведения об особенностях конструкции и технологичности отливок.

Практическое занятие. Основные способы литья. Особенности конструкции и технологичности отливок. Основные дефекты литья. Анализ литейных свойств сплавов на основе железа. Анализ литейных свойств сплавов цветных металлов.

Самостоятельная работа. Технологичность отливок.

Рекомендованная литература:

основная: [1, 2, 3];

дополнительная: [1, 2, 3].

Тема 11. Основы производства заготовок пластическим деформированием

Основные положения производства заготовок пластическим деформированием. Краткие сведения из теории пластической деформации металлов. Влияние различных факторов на пластичность и сопротивление деформации металлов. Нагревательные устройства. Классификация способов получения заготовок: прокатка, волочение, прессование, ковка, штамповка и их краткая сущность и особенности.

Самостоятельная работа. Виды напряжений и деформаций. Исследование влияния напряжений на деформацию заготовок. Способы получения заготовок пластическим деформированием. Влияние способа

пластического деформирования на свойства изделия. Упругая и пластическая деформация металлов.

Рекомендованная литература:

основная: [1, 2, 3]; дополнительная: [1, 2, 3].

Тема 12. Производство неразъемных соединений. Сварочное производство, пайка и склеивание.

Определение сварки. Физико-химические основы получения сварочного соединения. Классификация способов сварки: ручная дуговая, автоматическая дуговая под флюсом и в защитных глазах, электрошлаковая, лазерная. Их краткая сущность и особенности. Термомеханические методы сварки: холодная, взрывом, ультразвуковая. Специальные термические процессы: резка, наплавка, напыление.

Пайка металлов. Основные понятия. Способы пайки. Технология пайки. Основные дефекты сварных и паяных соединений. Склеивание металлов. Основы технологии получения клееных соединений.

Практическое занятие: Сравнительный анализ основных способов сварки. Расчет режимов электродуговой сварки.

Практическое занятие. Виды паяных соединений и их прочность. Способы получения неразъемных соединений склеиванием.

Самостоятельная работа. Основы технологии получения клееных соединений.

Рекомендованная литература:

основная: [1, 2, 3]; дополнительная: [1, 2, 3].

Тема 13. Основы размерной обработки деталей

Механическая обработка деталей резанием. Физико-химические и механические основы процесса резания. Формирование поверхности деталей резанием. Кинематические и геометрические параметры резания. Сущность и схемы основных способов обработки: точения, сверления, фрезерования, строгания, протягивания, шлифования, хонингования. Условия непрерывности, самозатачиваемости. Общие сведения о металлорежущих станках. Область применения способов резания. Сущность и основные параметры физико-химических методов размерной обработки. Электроэрозионная, электрохимическая, ультразвуковая, абразивная и лучевая обработки. Выбор способа обработки.

Самостоятельная работа. Технологические возможности и область применения способов размерной обработки. Анализ влияния угла заточки режущего инструмента на качество обрабатываемой поверхности. Анализ влияния скорости обработки на качество поверхности обрабатываемой

поверхности. Сущность и схемы основных способов обработки: точения, сверления, фрезерования, строгания, протягивания, шлифования, хонингования.

Рекомендованная литература:

основная: [1, 2, 3];

дополнительная: [1, 2, 3].

Тема 14. Производство и обработка неметаллических и композиционных материалов

Обработка заготовок из пластмасс. Литьё, обработка давлением, сварка и Особенности обработки пластмасс. термопластичных склеивание полимеров пластмасс. Особенности термореактивных И изготовления резиновых деталей и полуфабрикатов. Физико-технологические основы получения композиционных материалов. Типовая технологическая схема получения изделий методом порошковой металлургии. Краткая сущность Обработка и обработки изделий. соединение композиционных материалов. Напыление материалов, их виды и сущность.

Самостоятельная работа. Области применения изделий из неметаллических и композиционных материалов.

Конструкторско-технологические требования к изделиям из неметаллических и композиционных материалов. Примеры применения неметаллических и композиционных материалов.

Рекомендованная литература:

основная: [1, 2, 3];

дополнительная: [1, 2, 3].

5. Методические рекомендации по организации изучения учебной дисциплины «Материаловедение»

Лекции должны носить установочно-фундаментальный характер, быть направлены на изучение обучающимися соответствующей темы и содержать основные положения, составляющие сущность темы. В них раскрываться вопросы, возникающие перед специалистами безопасности в процессе их деятельности. Информация, полученная на лекции, является основной для его успешной работы на практических занятиях, при самостоятельном изучении и закреплении материала. Лекция - это указатель основного направления учебной деятельности обучающегося на данный момент. Более полное и глубокое изучение и освоение учебного материала обеспечивают рекомендованные лектором учебники, учебные нормативная документация, электронные ресурсы, которые обучающиеся прорабатывается самостоятельно

На лекциях по дисциплине «Материаловедение» излагаются фундаментальные понятия и методологические основы. На лекционных занятиях используется мультимедийный проектор с комплектом презентаций

Практические занятия — это вид учебного занятия, на котором обучающиеся отрабатывают навыки и умения решать практические задачи на основе полученных теоретических знаний.

На практических занятиях обучающиеся выполняют задания для практического решения с использованием натурных образцов, оборудования, справочников. Каждому обучающемуся выдается свой вариант задания.

Полноценное усвоение данной дисциплины и выполнение практических работ возможно при знании таких предметов как физика, химия.

Самостоятельная работа (подготовка) обучающихся проводится для углубления и закрепления знаний, полученных на лекциях и других занятиях, выработки навыков самостоятельного активного приобретения новой информации и включает: выполнение рефератов и практических заданий, изучение рекомендуемой литературы, подготовку к предстоящим учебным занятиям, зачетам, исследовательскую работу, подготовку докладов и выступлений по результатам научной деятельности. В самостоятельную работу обучающихся включаются затраты времени на подготовку ко всем видам занятий, составление отчетов по практическим занятиям, выполнение контрольной работы и самостоятельное изучение теоретического материала.

Для получения необходимой информации о выполнении обучающимися графика учебного процесса, установления качества усвоения учебного материала, степени достижения поставленной цели и задач обучения, стимулирования самостоятельной работы проводится текущий, рубежный и итоговый контроль успеваемости и качества подготовки. Помощь обучающимся оказывается во время консультаций.

6. Оценочные средства для проведения текущего контроля успеваемости и промежуточных аттестаций обучающихся по дисциплине «Материаловедение»

6.1. Примерный перечень теоретических вопросов, выносимых на зачет

(5 семестр)

- 1. Современные материалы, применяемые в различных отраслях промышленности; классификация по применению, характеристики и примеры наиболее распространенных из них.
- 2. Механические свойства металлов и общие понятие о каждом из свойств.
- 3. Испытание прочности металлов: сущность испытания, определяемые параметров металлов и их обозначения.
- 4. Испытание твердости металлов: методы испытания, и их сущность, обозначение определяемых показателей.
- 5. Испытание металлов на ударную вязкость: сущность метода, обозначения определяемых понятий.
- 6. Атомно-кристаллическое строение металлов: сущность строения, виды кристаллических решеток различных металлов и их характеристика.
- 7. Анизотропия кристаллов в металлах: ее сущность и влияние на свойства металлов.
- 8. Аллотропические превращения в металлах: ее сущность и влияние на свойства металлов.
- 9. Диффузионные процессы в металлах и дефекты в их кристаллических решетках.
 - 10. Теоретическая и практическая прочность металлов.
- 11. Железо, его свойства, структура и влияние температуры на структуру.
- 12. Разрушения металлов: виды разрушений, их особенности, факторы влияющие на разрушения.
 - 13. Диаграмма сплава железо-углерод и сущность линий на диаграмме.
- 14. Основные виды фаз, образующихся в сплавах и общая характеристика их свойств.
- 15. Структурные составляющих сплавов железо-углерод и их характеристика.
 - 16. Практические значения диаграммы сплава железо-углерод.
 - 17. Классификация и маркировка углеродистых сталей по качеству.
 - 18. Классификация и маркировка легированных сталей по качеству.
 - 19. Классификация и маркировка чугунов.
- 20. Инструментальные углеродистые и легированные стали, и их обозначение.
 - 21. Влияние легирующих элементов на превращение в сталях.
 - 22. Алюминий: свойства, его сплавы, маркировка и область

применения.

- 23. Медь: ее свойства сплавы, на основе меди, их свойства маркировка и область применения.
- 24. Магний и титан: свойства, сплавы на их основе, маркировка сплавов.
- 25. Превращения в сталях при нагревании и охлаждении, S -образные кривые.
 - 26. Структуры сплавов при охлаждении и их свойства
- 27. Химико-термическая обработка металлов: сущность отработки и условия ее выполнения.
- 28. Химико-термическая обработка металлов, виды XTO и их краткая сущность.
- 29. Термическая обработка металлов: назначения обработки, ее виды и сущность каждой из них.
 - 30. Диффузионная термообработка: ее сущность, виды и достоинства.
- 31. Механическое и термомеханическое упрочнение деталей и их сущность.
- 32. Коррозия металлов и сплавов: сущность коррозии, ее формы и виды.
- 33. Основные способы защиты металлов от коррозии, их сущность, достоинства и недостатки.
 - 34. Резина, ее состав, классификация и область применения.
 - 35. Пластмассы, их состав, классификация и применение.
- 36. Композиционные материалы: классификация по матрице упрочняющему наполнителю и их характеристика.

Примерный перечень теоретических вопросов, выносимых на экзамен (6 семестр)

- 1. Современные материалы, применяемые в различных отраслях промышленности; классификация по применению, характеристики и примеры наиболее распространенных из них.
- 2. Механические свойства металлов и общие понятие о каждом из свойств.
- 3. Испытание прочности металлов: сущность испытания, определяемые параметров металлов и их обозначения.
- 4. Испытание твердости металлов: методы испытания, и их сущность, обозначение определяемых показателей.
- 5. Испытание металлов на ударную вязкость: сущность метода, обозначения определяемых понятий.
- 6. Атомно-кристаллическое строение металлов: сущность строения, виды кристаллических решеток различных металлов и их характеристика.

- 7. Анизотропия кристаллов в металлах: ее сущность и влияние на свойства металлов.
- 8. Аллотропические превращения в металлах: ее сущность и влияние на свойства металлов.
- 9. Диффузионные процессы в металлах и дефекты в их кристаллических решетках.
 - 10. Теоретическая и практическая прочность металлов.
- 11. Железо, его свойства, структура и влияние температуры на структуру.
- 12. Разрушения металлов: виды разрушений, их особенности, факторы влияющие на разрушения.
 - 13. Диаграмма сплава железо-углерод и сущность линий на диаграмме.
- 14. Основные виды фаз, образующихся в сплавах и общая характеристика их свойств.
- 15. Структурные составляющих сплавов железо-углерод и их характеристика.
 - 16. Практические значения диаграммы сплава железо-углерод.
 - 17. Классификация и маркировка углеродистых сталей по качеству.
 - 18. Классификация и маркировка легированных сталей по качеству.
 - 19. Классификация и маркировка чугунов.
- 20. Инструментальные углеродистые и легированные стали, и их обозначение.
 - 21. Влияние легирующих элементов на превращение в сталях.
- 22. Алюминий: свойства, его сплавы, маркировка и область применения.
- 23. Медь: ее свойства сплавы, на основе меди, их свойства маркировка и область применения.
- 24. Магний и титан: свойства, сплавы на их основе, маркировка сплавов.
- 25. Превращения в сталях при нагревании и охлаждении, S -образные кривые.
 - 26. Структуры сплавов при охлаждении и их свойства
- 27. Химико-термическая обработка металлов: сущность отработки и условия ее выполнения.
- 28. Химико-термическая обработка металлов, виды XTO и их краткая сущность.
- 29. Термическая обработка металлов: назначения обработки, ее виды и сущность каждой из них.
 - 30. Диффузионная термообработка: ее сущность, виды и достоинства.
- 31. Механическое и термомеханическое упрочнение деталей и их сущность.
- 32. Коррозия металлов и сплавов: сущность коррозии, ее формы и виды.
- 33. Основные способы защиты металлов от коррозии, их сущность, достоинства и недостатки.

- 34. Резина, ее состав, классификация и область применения.
- 35. Пластмассы, их состав, классификация и применение.
- 36. Исходные материалы для производства чугуна и их характеристика.
- 37. Устройство доменной печи и процесс получения чугуна.
- 38. Кислородно-конверторный способ получения стали его сущность, достоинства и недостатки.
 - 39. Мартеновский способ получения стали и его сущность.
- 40. Электродуговой способ производства стали его достоинства и недостатки.
 - 41. Основы производства меди.
 - 42. Основы производства алюминия.
- 43. Порошковые материалы: методы получения порошков и их подготовка.
- 44. Порошковые материалы: основные свойства порошков и их характеристика.
- 45. Технологическая схема получения изделий из порошковых материалов и сущность ее основных этапов.
- 46. Литейные свойства металлов и их сплавов, сущность способов и их влияние на процесс изготовления отливок.
- 47. Основные операции технологического процесса производства отливок и их сущность.
- 48. Классификация способов литья по виду применяемых литейных форм и их сущность.
- 49. Классификация способов литья по способу заполнения форм жидким металлом.
- 50. Литье в песчано-глинистые формы: сущность литья, основные операции изготовление литейной формы в опоке, достоинства и недостатки способов.
- 51. Литье под давлением и центробежное: сущность каждого, их достоинства и недостатки.
- 52. Пластическая деформация металлов и их сплавов: сущность деформации, ее виды и различия, факторы, влияющие на деформации. Законы, лежащие в основе пластической деформацией.
- 53. Основные способы получения заготовок пластическим деформированием, сущность одного из них достоинства и недостатки.
 - 54. Физико-химические основы получения сварного соединения.
- 55. Основные способы сварки: ручная, дуговая и автоматические дуговые под флюсом и в защитных газах, их сущность, достоинства и недостатки.
- 56. Основные дефекты сварных и паяных соединений, их сущность и влияние на прочность конструкций.
- 57. Пайка и склеивание деталей: сущность соединения, применяемые материалы, достоинства и недостатки.
 - 58. Физико-химические и механические основы процесса резания.
 - 59. Классификация способов размерной обработки, их сущность и

особенности.

- 60. Основные физико-химические методы обработки, их сущность и особенности.
- 61. Производство деталей из пластмасс: методы получения деталей и их сущность.
- 62. Производства деталей из резины: методы получения деталей и их сущность.
- 63. Основные этапы технологической схемы получения деталей из композиционных материалов и их сущность.
 - 64. Напыление материалов: виды методов и их краткая сущность.
- 65. Композиционные материалы: классификация по матрице упрочняющему наполнителю и их характеристика.
- 66. Органические вяжущие вещества и материалы на их основе: битумные и дегтевые вещества; асфальтовые строительные растворы и бетоны; мастики кровельные и гидроизоляционные; нефтяные эмульсии и пасты.

6.2. Шкала оценивания результатов промежуточной аттестации и критерии выставления оценок.

На зачете используется традиционная система контроля и оценки успеваемости обучающихся.

Критерии выставления оценок по двухбалльной системе «зачтено», «незачтено» представлены в таблице 3.

Таблица 3

Форма контроля	Показатели оценивания	Критерии выставления оценок	Шкала оценивания
зачёт	правильность и	заслуживает обучающийся,	зачтено
	полнота ответа	практически полностью освоивший	
		знания, умения, компетенции и	
		теоретический материал, учебные	
		задания не оценены максимальным	
		числом баллов, в основном	
		сформировал практические навыки.	
		заслуживает обучающийся, не	не зачтено
		освоивший знания, умения,	
		компетенции и теоретический	
		материал, учебные задания не	
		выполнил, практические навыки не	
		сформированы	

На экзамене используется традиционная система контроля и оценки успеваемости обучающихся

Критерии выставления оценок по четырехбалльной системе «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» представлены в таблице 4.

Таблица 4 - Критерии оценивания результатов обучения

Оценка	Критерии оценивания
Высокиий уровень «5» (отлично)	оценку «отлично» заслуживает обучающийся, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы.
Средний уровень «4» (хорошо)	оценку «хорошо» заслуживает обучающийся, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки.
Пороговый уровень «3» (удовлетворитель но)	оценку «удовлетворительно» заслуживает обучающийся, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к минимальному, некоторые практические навыки не сформированы.
Минимальный уровень «2» (неудовлетворите льно)	оценку «неудовлетворительно» заслуживает обучающийся, не освоивший знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы.

7. Учебно-методическое и информационное обеспечение

7.1. Лицензионное и свободно распространяемое программное обеспечение

- 1. Microsoft Windows Std 2008 32Bit/x64 Server Rus OEM (Контракт № 0372100009512000037-0003177-02 от 24.08.2012 года;
 - 2. Libre Office офисный пакет;
 - 3. Microsoft Office Standard 2007 ПО-7ВЕ-723 офисный пакет.

7.2.Литература

Основная:

1. Материаловедение. Технология конструкционных материалов: учебное пособие / Под ред. В.С. Артамонова — СПб.: СПб УГПС МЧС России, 2012 — 312 с. *Режим доступа:* http://elib.igps.ru/?17&type=card&cid=ALSFR-01d81d17-ffa4-4a89-8b17-db9c0969492e

- 2. Королева Л.А., Брусянин Д.В. Технология конструкционных материалов и её роль в обеспечении техносферной безопасности: учебное пособие. СПб.: СПб УГПС МЧС России, 2017. 168 с. Режим доступа: http://elib.igps.ru/?15&type=card&cid=ALSFR-a34357df-43e9-45c1-9354-105709fc9ea0&remote=false
- 3. Брусянин Д.В., Королева Л.А. Методы определения и изменения свойств материалов в техносферной безопасности. Лабораторный практикум: учебное пособие. СПб.: СПб УГПС МЧС России, 2017. 112 с. Режим доступа: http://elib.igps.ru/?5&type=card&cid=ALSFR-2baa5933-47f7-424b-a617-621e0095e44f&remote=false

Дополнительная:

- 2. Лахтин Ю. М., Леонтьева В. П. Материаловедение: Учебник для высших технических учебных заведении. —3-е нзд., перераб. и доп. —М.: Машиностроение, 1990. —528 с. Режим доступа: http://elib.igps.ru/?22&type=card&cid=ALSFR-2a1e0bed-45e3-44e4-a530-7e3bce3a6eda&remote=false
- 3. Маталловедение и технология материалов. / Под ред. Солнцева Ю.П. М.: Металлургия, 1988. 512 с. *Режим доступа:* http://elib.igps.ru/?20&type=card&cid=ALSFR-49e97c44-86da-457f-b696-f350c2381fce
- 4. Колесник П. А. Материаловедение на автомобильном транспорте: Учебник для вузов. 4-е изд., перераб. и доп. М.: доп. —М.: Транспорт, 1987.— 271 с. *Режим доступа:* http://elib.igps.ru/?33&type=card&cid=ALSFR-fe4e7d4f-2918-407d-9141-5c29510a372d&remote=false

7.3. Материально-техническое обеспечение дисциплины

Материально-техническими средствами для обучения по дисциплине являются: меловая (маркерная) доска; персональный компьютер, мультимедийный проектор, экран.

Автор: Брусянин Д.В.