Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Горбунов Александрович о государственное бюджетное образовательное

Должность: Заместитель начальника университета по учебной работе Дата подписания: 30.09.2024 14:47:29 **учреждение высшего образования**

286e49ee1471d400cc1f45539d51ed7bbf0e9cc**2анкт-Петербургский университет**

Государственной противопожарной службы МЧС России»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ химия

Бакалавриат по направлению подготовки 27.03.03 «Системный анализ и управление» Направленность (профиль) «Системный анализ и управление в организационно-технических системах»

1. Цели и задачи дисциплины

Цели освоения дисциплины:

- формирование целостного мировоззрения и развитие системноэволюционного стиля мышления;
- формирование системы химических знаний как фундаментальной базы инженерной подготовки;
- формирование навыков по грамотному применению основных понятий и законов химии в процессе научного анализа проблемных ситуаций, которые инженер должен разрешать при создании новой техники и новых технологий.
- ознакомление с историей и логикой основных открытий химии.

Перечень компетенций, формируемых в процессе изучения дисциплины

Компетенции	Содержание
ОПК – 1	Способность анализировать задачи профессиональной
	деятельности на основе положений, законов и методов в
	области естественных наук и математики

Задачи дисциплины:

- освоение знаний о химической составляющей естественно-научной картины мира, важнейших химических понятиях, законах и теориях;
- овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;
- развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения химических знаний с использованием различных источников информации, в том числе компьютерных;
- воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде;
- применение полученных знаний и умений для безопасного (в том числе обеспечение пожарной безопасности) использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

2. Перечень планируемых результатов обучения дисциплины, соотнесенных с планируемыми результатами освоения образовательной программы

Индикаторы достижения компетенции	Планируемые результаты обучения по дисциплине
Системное и крит	ическое мышление
Способен решать задачи управления (анализа) в организационно-технических системах, выделяя базовые составляющие, осуществляет декомпозицию задачи. ОПК-1.1.	Знает Принципы решения задач управления (анализа) в организационно-технических системах.
	Умеет
	Выделять базовые составляющие,
	осуществляет декомпозицию задачи.
Применяет методы анализа	Знает
профессиональных задач, умеет выбирать	Как оценивать эффективность процедур
возможные варианты решения задачи	анализа проблем и принятия решений в
управления в организационно-технических	профессиональной деятельности с
системах, оценивая их достоинства и	использованием приобретенных новых
недостатки.	знаний в области химии.
ОПК-1.2.	Умеет
	Использовать методы системного анализа и
	обобщения применительно к проблемам,
	процессам и явлениям в области химии.

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к обязательной части основной профессиональной образовательной программы бакалавриата по направлению подготовки 27.03.03 «Системный анализ и управление», направленность (профиль) «Системный анализ и управление в организационно-технических системах».

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 часов.

4.1 Распределение трудоемкости учебной дисциплины по видам работ по семестрам и формам обучения

для очной формы обучения

Вид учебной работы	Всего часов	Семестр
		2
Общая трудоемкость дисциплины в часах	144	144
Общая трудоемкость дисциплины в зачетных	4	4
единицах		
Контактная работа, в том числе	58	58
Аудиторные занятия	56	56
Лекции	22	22
Практические занятия	24	24
Лабораторные работы	8	8
Консультация пред экзаменом	2	2
Самостоятельная работа	52	52
В том числе:		
Экзамен		36

4.2. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

для очной формы обучения

			Ко.	личест	ВО			Га
			часо	в г	Ю	видам		.607
		OB	за	нятий				н ра
№ пп	Наименование тем	Всего часов	Лекции	Практические	Лаборат.работы	Консультации	Контроль	Самостоятельная работа
	2 семестр							
1.	РАЗДЕЛ 1. Систематизация в химии.	32	8	8	4			12
	Реакционная способность веществ							
1.1.	Систематизация в химии. Периодическая	10	2	4				4
	система элементов							
1.2.	Кислотно-основные и окислительно-	18	4	4	4			6
	восстановительные свойства веществ							

1.3.	Основы биохимии	4	2					2
	Итого по разделу	32	8	8	4			12
2.	РАЗДЕЛ 2. Химическая термодинамика и	26	6	10				10
	кинетика							
2.4.	Энергетика химических процессов	10	2	4				4
2.5.	Направленность химических реакций.	6	2	2				2
	Энергия Гиббса							
2.6.	Скорость химической реакции и методы ее	10	2	4				4
	регулирования. Катализаторы и							
	каталитические системы							
	Итого по разделу	26	6	10				10
3	РАЗДЕЛ 3. Химические системы	28	4	6				18
3.7.	Основные свойства растворов	14	2	4				8
3.8.	Электрохимические системы	14	2	2				10
	Итого по разделу	28	4	6				18
4.	РАЗДЕЛ 4. Химическая идентификация	20	4		4			12
4.9.	Методы анализа	14	2		4			8
4.10	Введение в экологическую химию	6	2					4
	Итого по разделу	20	4		4			12
	Консультация	2				2		
	Экзамен	36					36	
	Итого за семестр	144	22	24	8		36	52
	Итого по дисциплине	144	22	24	8	2	36	52

Примечание: МП – мультимедийный проектор; ЛО – лабораторное оборудование.

4.3 Тематический план для обучающихся очной формы обучения 4.3. Содержание дисциплины Химия

РАЗДЕЛ 1. Систематизация в химии. Реакционная способность веществ

Тема 1.1. Систематизация в химии. Периодическая система элементов.

Лекции. Периодический закон Д.И. Менделеева и строение атома. Понятие периодичности. История открытия периодического закона Д.И. Менделеева. Структура Периодической системы Д.И. Менделеева. Химическая связь.

Практическое занятие. Характеристика элемента по его положению в Периодической системе. Основные сведения о строении атома. Работа с Периодической системой элементов Д.И. Менделеева. Составление электронных паспортов элементов.

Практическое занятие. Основные классы неорганических соединений. Простые вещества и химические соединения. Генетическая связь основных классов органических соединений

Самостоятельная работа. Конденсированное состояние вещества. Строение твердых тел и жидкостей. Силы межмолекулярного и межатомного взаимодействия в твердых телах и жидкостях. Типы кристаллических решеток. Аморфное состояние вещества.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3-5].

Тема 1.2. Кислотно-основные и окислительно-восстановительные свойства веществ

Лекция. Кислотно-основные свойства веществ. Основные положения теории электролитической диссоциации. Диссоциация кислот, гидроксидов, солей. Гидролиз солей.

Практическое занятие. Водородный показатель. Ионные равновесия в растворах электролитов. Расчет рН кислот и гидроксидов.

Практическое занятие. Окислительно-восстановительные реакции. Понятие окислительно-восстановительных реакций и их классификация. Важнейшие окислители и их пожароопасные свойства. Важнейшие восстановители и их пожароопасные свойства

Лабораторная работа. Окислительно-восстановительные реакции.

Самостоятельная работа. Изучение окислительных свойств азотной и концентрированной серной кислоты: индивидуальные задания по теме (составление окислительно-восстановительных реакций электронно-ионным методом), гидролиз солей.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3-5];

Тема 1.3. Основы биохимии.

Лекция. Основы биохимии. Основные классы природных соединений. Белки, жиры, углеводы. Химические элементы в организме человека.

Самостоятельная работа. Факторы риска для здоровья человека.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3].

РАЗДЕЛ 2. Химическая термодинамика и кинетика Тема 2.4. Энергетика химических процессов

Лекция. Понятие термодинамической системы. Параметры состояния и термодинамические функции состояния. Основные понятия химической

термодинамики. Энергетика химических реакций. Первый закон термодинамики. Понятие энтальпии. Термохимические законы.

Практическое занятие. Термохимические расчеты. Расчет тепловых эффектов реакций по 1 и 2-му следствиям закона Гесса.

Практическое занятие. Определение удельной теплоты сгорания веществ. Удельная теплота сгорания химических соединений. Расчет низшей теплоты сгорания по формуле Д.И. Менделеева

Самостоятельная работа. Индивидуальные задания по теме (расчет удельной теплоты сгорания индивидуального вещества, расчет категории помещений по взрывопожарной и пожарной опасности).

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3, 4].

Тема 2.5. Направленность химических реакций. Энергия Гиббса

Лекция. Направленность химических реакций. Понятие самопроизвольно протекающих реакций. Понятие энтропии - меры неупорядоченности системы. Второй закон термодинамики. Изобарно-изотермический потенциал (энергия Гиббса) - критерий возможности самопроизвольного протекания процессов.

Практическое занятие. Энергия Гиббса-критерий возможности протекания химических реакций. Расчетные методы определения энтропии химических реакций. Определение изобарно-изотермического потенциала химических реакций. Оценка возможности протекания реакций.

Самостоятельная работа. Влияние энтальпийного и энтропийного факторов на равновесие.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3, 4].

Тема 2.6. Скорость химической реакции и методы ее регулирования. Катализаторы и каталитические системы

Лекция. Введение в химическую кинетику. Скорость химической реакции. Скорость химической реакции. Основные термины. Факторы, влияющие на скорость реакции. Закон действующих масс. Правило Вант-Гоффа, уравнение Аррениуса. Энергия активации. Катализ. Управление скоростями химических реакций.

Практическое занятие. Скорость химической реакции. Факторы, влияющие на скорость реакции. Закон действующих масс и кинетические расчеты. Правило Вант-Гоффа, уравнение Аррениуса, решение задач на влияние температуры на скорость реакций.

Практическое занятие. Влияние внешних факторов на скорость химических реакций. Химическое равновесие. Константа химического равновесия. Влияние температуры, давления, концентрации реагирующих веществ, добавок инертных газов и катализаторов на химическое равновесие. Принцип Ле Шателье.

Самостоятельная работа. Виды химических реакций. Типы сложных реакций: последовательные, параллельные, сопряженные реакции. Характеристика цепных реакций. Цепные реакции как основа процессов окисления. Неразветвленные и разветвленные цепные реакции. Колебательные реакции.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3, 4].

Раздел 3. Химические системы

Тема 3.7. Основные свойства растворов

Лекция. Понятие растворов и их классификация. Физико-химические и огнетушащие свойства воды. Растворимость и факторы, на нее влияющие. Способы выражения состава растворов.

Практическое занятие. Способы выражения состава растворов. Безразмерные величины (массовая доля, мольная доля). Концентрации (молярная концентрация, массовая концентрация).

Практическое занятие. Законы Рауля. Давление насыщенного пара. 1-й закон Рауля. Определение объемной концентрации насыщенных паров в емкости. Температура замерзания и температура кипения растворов. 2-й закон Рауля.

Самостоятельная работа. Теория образования растворов Д.И. Менделеева. Осмотическое давление.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3, 4].

Тема 3.8. Электрохимические системы

Лекция. Основы электрохимии. Электродные потенциалы. Гальванические элементы и их классификация. Понятие электролиза (вопрос выносится на практическое занятие).

Практическое занятие. Понятие электрохимического потенциала. Гальванические элементы.

Самостоятельная работа. Первичные, вторичные, концентрационные, топливные элементы. Химические источники электрической энергии. Аккумуляторы.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3, 4].

РАЗДЕЛ 4. Химическая идентификация Тема 4.9. Методы анализа веществ.

Лекция. Понятия количественного и качественного анализа Основные методы химического анализа: гравиметрия и титриметрия. Основные физико-химические методы анализа: спектрофотометрия, потенциометрия, хроматография, атомно-эмиссионная спектроскопия, и атомно-адсорбционная спектроскопия)

Лабораторная работа. Основы количественных методов анализа: титрование и гравиметрия. Основы качественного анализа: специфические реакции на катионы и анионы.

Самостоятельная работа. Методы качественного анализа.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3, 5].

Тема 4.10. Введение в экологическую химию

Лекция. Экологическая химия: основные понятия и определения. Основные виды химического загрязнения окружающей среды. 3. Способы снижения техногенного воздействия на среду обитания.

Самостоятельная работа. Методы количественного анализа.

Рекомендуемая литература:

основная: [1, 2];

дополнительная [3, 5, 6].

5. Методические рекомендации по организации изучения дисциплины

При реализации программы дисциплины используются лекционные и практические занятия, лабораторные работы.

Общими целями занятий являются:

- обобщение, систематизация, углубление, закрепление теоретических знаний по конкретным темам дисциплины;
- формирование умений применять полученные знания на практике, реализация единства интеллектуальной и практической деятельности;
- выработка при решении поставленных задач профессионально значимых качеств: самостоятельности, ответственности, точности, творческой инициативы.

Целями лекции являются:

- дать систематизированные научные знания по дисциплине, акцентировав внимание на наиболее сложных вопросах;
- стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

В ходе практического занятия обеспечивается процесс активного взаимодействия обучающихся с преподавателем; приобретаются практические навыки и умения. Цель практического занятия: углубить и закрепить знания, полученные на лекции, формирование навыков использования знаний для решения практических задач; выполнение тестовых заданий по проверке полученных знаний и умений.

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях и других занятиях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим занятиям.

6. Оценочные материалы по дисциплине

Текущий контроль успеваемости обеспечивает оценивание хода освоения дисциплины, проводится в соответствии с содержанием дисциплины по видам занятий в форме опроса, решения задач, тестирования.

Промежуточная аттестация обеспечивает оценивание промежуточных и окончательных результатов обучения по дисциплине, проводится в форме экзамена.

6.1. Примерные оценочные материалы:

6.1.1. Текущего контроля

Типовые вопросы для опроса:

- 1) Дайте определение относительной атомной массы, относительной молекулярной массы, молярной массы, моля, молярного объема.
- 2) Как изменяются металлические и неметаллические свойства в группах и периодах?
- 3) Назовите типы окислительно-восстановительных реакций.
- 4) При каких условиях возрастает энтропия в химических процессах?
- 5) Какими способами можно рассчитать низшую теплоту сгорания вешеств?
- 6) Как влияет изменение температуры, давления, концентрации веществ на равновесие в химической реакции?
- 7) Приведите примеры истинных растворов.
- 8) В чем заключается сущность закона разбавления Оствальда?
- 9) Сформулируйте второй закон Рауля.

10) Назовите основные инструментальные методы химического анализа.

Типовые задачи:

- 1) Сколько кмолей исходных веществ участвует в реакции горения в воздухе 1 кмоля CH_3 -O- C_3H_7 ?
- 2) Из перечисленных ниже характеристик атомов периодически изменяется
- а) заряд ядра атома; б) относительная атомная масса; в) число энергетических уровней в атоме; г) число электронов на внешнем энергетическом уровне. Выберите и запишите верный ответ (ответы).
- 3) Сколько **кг** С₆H₅COH сгорело, если в результате образовалось 25 \mathbf{m}^3 паров воды. Температура 11 0 C, давление 1,3 ат.
- 4) Неметаллические свойства элементов, находящихся в главных подгруппах периодической системы, наиболее ярко выражены у элементов, расположенных
- а) в верхней части подгруппы; б) в середине подгруппы; в) в нижней части подгруппы; г) у всех элементов подгруппы примерно одинаково.
- 5) Сколько нейтронов содержится в атоме элемента с порядковым номером 53?
 - 6) Какое число атомов содержится в образце кальция Са массой 4 г?
- 7) Какова максимальная валентность элемента, имеющего электронный паспорт $1s^22s^22p^63s^23p^2$?
- 8) Среди предложенного ряда веществ выберите вещества, относящиеся к классу кислот:

NaH; Ca(OH)₂; HBr; O₂; H₂SiO₃, CH₃COOH; BaO.

- 9) Запишите уравнения реакций ядерного распада: плутоний-239 (α); радий-228 (β).
- 10) Запишите полное уравнение следующей ядерной реакции: магний-24 (2 ₁d, α).
 - 11) Одинаковы ли понятия "элемент" и "атом"? Ответ поясните.
- 12) Приведите примеры 2-х простых и 2-х сложных веществ окислителей. Какое простое вещество является сильнейшим окислителем?
 - 13) Титан относится к s-, p-, d- или f- элементам?
- 14) Приведите примеры веществ с ковалентной полярной и ковалентной неполярной связью.
 - 15) Вычислить низшую теплоту сгорания древесины по формуле Д.И. Менделеева. Состав древесины: С 51 %, H 12 %, (O+N) 35 %, остальное влага W.

16) Определить, при какой температуре начнется реакция разложения карбоната кальция:

$$CaCO_{3 (mB)} = CaO_{(mB.)} + CO_{2 (c)}$$

17) Не производя расчетов, определить возможность и условия протекания следующего процесса:

$$N_{2(e)} + 2O_{2(e)} + 67$$
кДж $= 2NO_{2(e)}$

- 18) Напишите <u>выражение</u> для вычисления теплового эффекта реакции горения $C_5H_{11}OH$ в воздухе по 1-му и 2-му следствию закона Гесса.
- 19) Вычислить тепловой эффект реакции горения этилена C_2H_4 . Выразить эту величину в кДж/кг.
- 20) Метанол получается в результате реакции CO $_{(r)}$ + 2H_{2 $_{(r)}$} \leftrightarrow CH₃OH $_{(ж)}$ + 128 кДж.
- 21) Какими способами можно увеличить выход метанола? Ответ поясните.
- 22) Как изменится скорость прямой реакции $4HCl + O_2 \leftrightarrow 2Cl_2 + 2H_2O$
 - а) при увеличении объема системы в 2 раза?
 - б) при увеличении концентрации HCl в 3 раза?
 - в) при увеличении объема в 2 раза?
- 23) Как изменится скорость реакции при понижении температуры в системе со 150^{0} С до 120^{0} С, если при повышении температуры на 40^{0} скорость этой реакции увеличилась в 81 раз?
- 24) Найдите константу скорости прямой реакции $2A + B \leftrightarrow C$, зная, что при концентрациях A и B, соответственно, равных 0,5 и 0,6 моль/л, ее скорость составляет 0,018 моль/л· мин.
- 25) Чему равна массовая доля нитрат аммония NH_4NO_3 в 0,5 М растворе плотностью 1,09 г/мл?
- 26) Определите молярность 25 %-ного раствора уксусной кислоты CH_3COOH , плотностью 1,21 г/мл.
- 27) Вычислить pH 10^{-3} M раствора HNO₃.
- 28) pH раствора равен 8. Вычислить концентрацию ионов H^+ и OH^- в этом растворе.
- 29) При какой температуре должен замерзнуть водный раствор сахара, в котором массовая доля $C_{12}H_{22}O_{11}$ равна 50 %?

Взрывоопасны ли насыщенные пары гексана при 40° C? Атмосферное давление 755 мм рт ст, КПР гексана 0.98% - 5.48%?

30) Относительная плотность паров линейного предельного углеводорода по кислороду равна 1,375. Выведите молекулярную формулу этого соединения.

Типовые задания для тестирования:

1)

Вопрос № 1		Вопрос № 2	
Атомный номер элемента показывает:	1) число элементарных частиц в атоме 2) число нуклонов в атоме 3) число нейтронов в атоме	Геометрическую форму атомных орбиталей характеризует:	1) главное квантовое число 2) побочное квант. число 3) магнитное квант. число
	4) число протонов в атоме		4) спин
Вопрос № 3		Вопрос № 4	
Электронная формула	1) 2s ¹	Элемент,	1) магний
внешнего электронного	2) 3s ¹	невозбужденный атом	2) углерод
слоя наиболее активного металла:	3) $3s^2$	которого не содержит неспаренных электронов, -	3) cepa
Morassa.	4) $3s^23p^1$	это	4) кремний
Вопрос № 5		Вопрос № 6	
В основном состоянии	1) 1	Число протонов в атоме	1) 33
число неспаренных	2) 2	элемента, который	2) 50
электронов в атоме фосфора равно:	3) 3	находится в 4 периоде и в главной подгруппе V	3) 40
фосфори равно.	4) 4	группы равно:	4) 23
Вопрос № 7		Вопрос № 8	
Максимальное число	1) 2	Общее число	1) 2
р-элементов в	2) 10	s — элементов в	2) 10
каждом периоде	3) 6	периодической системе	3) 12
равно	4) 14	равно:	4) 14
Вопрос № 9		Вопрос № 10	
Самый активный	1) s-элементам	Самый активный	1) s-элементам
металл	2) d-элементам	неметалл	2) d-элементам
периодической	3) р-элементам	периодической	3) р-элементам
системы относится к	4) f-элементам	системы относится к	4) f-элементам

2.

Вопрос № 1	
Какая их приведенных реакций является	1) A + 3B ≒ 2C – 10 кДж
экзотермической:	
	2) А+В+20 кДж ≒ С + Д
	3) $2A + B \rightleftharpoons 2C \Delta H < 0$
	4) $A + B \leftrightarrows 3C$ $\Delta H > 0$
Вопрос № 2	
При каком соотношении энтальпийного и	1) $\Delta H < 0$ и $\Delta S < 0$
энтропийного факторов реакция возможна	2) Δ H < 0 и Δ S > 0
при любых условиях:	3) $\Delta H > 0$ и $\Delta S < 0$

	4) $\Delta H > 0$ и $\Delta S > 0$
Вопрос № 3	
При рассмотрении химической реакции	1) исходные реагенты
понятие «система» означает	
	2) продукты химической реакции
	3) реакционный сосуд
	4) исходные реагенты и продукты реакции
Вопрос № 4	
Изолированная система с окружающей ее	1) обменивается энергией, но не
средой	обменивается веществом
	2) не обменивается ни веществом, ни
	энергией
	3) обменивается веществом, но не
	обменивается энергией
	4) обменивается и энергией, и веществом
Вопрос № 5	
Первый закон термодинамики записывается	1) $pV = nRT$
следующим образом	
	$2) k = R/N_A$
	3) $k = Aexp(-E_a/RT)$
	$4) \Delta Q = \Delta U + A$
Вопрос № 6	
Какая из приведенных величин не является	1) энтальпия
термодинамической функцией состояния	2) давление
	3) энергия Гиббса
	4) энтропия

3.

Вопрос № 1			
В зависимости от агрегатного	1) жидкими, прозрачными, окрашенными		
состояния растворителя растворы	2) тверд	дыми, аморфными, стеклообразными	
бывают	3) тверд	дыми, жидкими, газообразными	
	4) газоо	образными, жидкими, мутными	
Вопрос № 2			
Зависимость растворимости газов от	1)) Бойля-Мариотта	
давления определяется законом	2)) Авогадро	
	3)) Генри	
	4)) Вюрца	
Вопрос № 3			
Для приготовления	1) 15	5 г соли и 300 г воды	
300 г 5 %-ного раствора поваренной соли	2) 5	г соли и 295 г воды	
в воде необходимо	3) 5	соли и 300 г воды	
	4) 15	5 г соли и 285 г воды	
Вопрос № 4	•		

В 1 л раствора содержится 6 г	1) 0,1 1	моль/кг			
карбамида CO(NH ₂) ₂ . Молярность	2) 6 г/л	I			
этого раствора составляет	3) 0,1 1	моль/л			
	4) 6 г/н	CΓ			
Вопрос № 5					
В емкости № 1 находится 50 г ацетона,	1) бол	ьше в емкости № 1			
а в емкости № 2 – 50 г ацетона и 50 г	2) бол	ьше в емкости № 2			
воды. Давление пара ацетона над	3) оди	наково в обеих емкостях			
раствором	4) давление пара отсутствует				
Вопрос № 6					
При стандартной температуре жидкость	•	1) компонентом № 1			
№ 1 имеет давление насыщенного пара	100 мм	м 2) компонентом № 2			
рт.ст., а жидкость № $2-150$ мм рт.ст.		3) содержание			
Жидкости смешали в соотношении		компонентов в паре одинаково			
1:1 и подвергли перегонке. Паровая фа	за	4) жидкости не испаряются			
обогащается:					
Вопрос № 7	Вопрос № 7				
При более низкой температуре замерзает		1) 100 г этанола С ₂ Н ₅ ОН			
раствор, приготовленный из 2 л воды и	2	2) 100 г пропанола C ₃ H ₇ OH			
	3	3) 100 г метанола СН ₃ ОН			
	4	$100~$ г этиленгликоля ${ m C_2H_6O_2}$			

6.1.2. Промежуточной аттестации

Примерный перечень вопросов, выносимых на экзамен

- 1. Способы выражения состава растворов.
- 2. Расчет молярной концентрации раствора (молярности М).
- 3. Расчет массовой доли вещества в растворе (%-ной концентрации ω).
- 4. Влияние температуры, давления (закон Генри), наличия примесей на растворимость газов в жидкостях.
- 5. Коллигативные свойства растворов. Температура кипения и замерзания растворов (сравнить с чистым растворителем). Физический смысл криоскопической и эбулиоскопической констант.
- 6. Испарение. Давление насыщенного пара при различных температурах и при температуре кипения.
- 7. Примеры растворов электролитов и неэлектролитов. Ступенчатая диссоциация многоосновных кислот и двухкислотных гидроксидов в водном растворе.
- 8. Дисперсные системы (классификация по составу, примеры дисперсных систем на пожарах, причины устойчивости дисперсных систем).

- 9. Классификация дисперсных систем по агрегатному состоянию.
- 10. Причины устойчивости дисперсных систем. Разрушение коллоидов.
- 11. Электродный потенциал.
- 12. Свойства ряда напряжений.
- 13. Гальванические элементы и их классификация.
- 14. Электролиз солей.
- 15. Коррозия металлов. Способы защиты от коррозии.
- 16. Классификация высокомолекулярных соединений и их особенности.
- 17. Способы получения полимеров.
- 18. Каучуки. Пластмассы. Химические волокна.
- 19. Закон Гесса. Выражение для теплового эффекта реакции горения по 1 и 2-му следствиям закона Гесса.
- 20. Тепловой эффект реакций (соотношение Q и Δ H для эндо- и экзотермических реакций). Удельная теплота сгорания.
- 21. Оценка изменения энтропии в различных процессах (испарения, конденсации, плавления, кристаллизации, возгонки).
- 22. Термодинамические функции состояния и их размерность. Уравнение Гиббса. Энтальпийный и энтропийный факторы, их влияние на протекание реакций при низких и высоких температурах.
- 23. Оценка возможности и условий протекания реакций.
- 24. Закон действующих масс. Выражение для скорости прямой и обратной реакции. Физический смысл константы скорости реакции.
- 25. Зависимость скорости реакции от температуры, давления, изменения объема системы. Расчетные задачи.
- 26. Типы сложных реакций. Понятие разветвленных и неразветвленных цепных реакций, примеры радикалов.
- 27. Константа химического равновесия.
- 28. Влияние температуры, давления, концентрации веществ на равновесие в химической реакции (принцип Ле Шателье). Задачи.
- 29. Причина увеличения скорости реакции при повышении температуры. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации.
- 30. Стехиометрические законы химии.
- 31. Основные понятия химии: относительная атомная, молекулярная масса, молярная масса, моль, молярный объем.
- 32. Расчеты по уравнениям химических реакций. Определение числа моль исходных веществ и продуктов реакции по уравнению реакции горения.
- 33. Расчет числа частиц в образце (через число молей).
- 34. Определение плотности газа или пара при заданных температуре и давлении.

- 35. Расчет молярного объема газа или пара при заданных температуре и давлении.
- 36. Расчет плотности газа или пара по другому газу (водороду, кислороду, воздуху, азоту).
- 37. Классификация неорганических веществ (основные оксиды, кислотные оксиды, кислоты, гидроксиды, соли).
- 38. Примеры 1) простых и сложных горючих и негорючих веществ; 2) простых и сложных негорючих, но представляющих пожарную опасность веществ; 3) простых и сложных огнетушащих веществ; 4) простых и сложных веществ, представляющих опасность при взаимодействии с водой; 5) простых и сложных веществ окислителей; 6) сильных восстановителей.
- 39. Изменение металлических и неметаллических свойств в группах и периодах.
- 40. Электронные паспорта элементов. Определение числа протонов, электронов, нейтронов, количества неспаренных электронов, значения главного квантового числа, числа энергетических уровней. Привести примеры 3-d и 4-р элементов.
- 41. Примеры веществ с различными типами химической связи (ковалентная полярная, ковалентная неполярная, ионная, металлическая, водородная).
- 42. Основные положения теории окисления восстановления.
- 43. Типы окислительно-восстановительных реакций.
- 44. Важнейшие окислители и восстановители.
- 45. Основные химические методы анализа веществ.
- 46. Основные физико-химические методы анализа веществ.
- 47. Природные соединения: белки, жиры, углеводы.
- 48. Химия и защита окружающей среды.
- 49. Переработка органического топлива: переработка нефти, переработка каменного угля, переработка природного газа.
- 50. Химия и здоровье человека.

6.2. Шкала оценивания результатов промежуточной аттестации и критерии выставления оценок

Система оценивания включает:

Форма	Показатели	Критерии выставления оценок	Шкала оценивания	
контроля	оценивания	критерии выставления оценок	шкала оценивания	
экзамен	правильность и	дан правильный, полный ответ на	отлично	
	полнота ответа	поставленный вопрос, показана		
		совокупность осознанных знаний по		

дисциплине, доказательно раскрыты	
основные положения вопросов;	
могут быть допущены недочеты,	
исправленные самостоятельно в	
процессе ответа.	
•	V.0.40 0 VV.0
дан правильный, недостаточно	хорошо
полный ответ на поставленный	
вопрос, показано умение выделить	
существенные и несущественные	
признаки, причинно-следственные	
связи; могут быть допущены	
недочеты, исправленные с помощью	
преподавателя.	
дан недостаточно правильный и	удовлетворительно
полный ответ; логика и	
последовательность изложения	
имеют нарушения; в ответе	
отсутствуют выводы.	
ответ представляет собой	неудовлетворительно
разрозненные знания с	
существенными ошибками по	
вопросу; присутствуют	
фрагментарность, нелогичность	
изложения; дополнительные и	
уточняющие вопросы не приводят к	
коррекции ответа на вопрос.	

7. Ресурсное обеспечение дисциплины

7.1. Лицензионное и свободно распространяемое программное обеспечение отечественного производства

- МойОфис Образование [ПО-41В-124] Полный комплект редакторов текстовых документов и электронных таблиц, а также инструментарий для работы с графическими презентациями [Свободно распространяемое. Номер в Едином реестре российских программ для электронных вычислительных машин и баз данных 4557]
- Astra Linux Common Edition релиз Орел [ПО-25В-603] Операционная система общего назначения "Astra Linux Common Edition" [Коммерческая (Full Package Product). Номер в Едином реестре российских программ для электронных вычислительных машин и баз данных 4433]

7.2. Профессиональные базы данных и информационные справочные системы

Информационная справочная система — Сервер органов государственной Российской Федерации http://россия.рф/ (свободный профессиональные базы данных — Портал открытых данных Российской Федерации https://data.gov.ru/ (свободный доступ); федеральный «Российское образование» http://www.edu.ru (свободный доступ); система официального опубликования правовых актов В электронном виде http://publication.pravo.gov.ru/ (свободный федеральный доступ); «Совершенствование государственного управления» https://ar.gov.ru (свободный доступ); электронная библиотека университета http://elib.igps.ru (авторизованный доступ); электронно-библиотечная система «ЭБС IPR BOOKS» http://www.iprbookshop.ru (авторизованный доступ).

7.3. Литература

Основная литература

- 1. Глинка, Николай Леонидович. Общая химия: учебное пособие / Н. Л. Глинка. изд. стер. М.: КноРус, 2013. 752 с. Библиогр.: с. 725-747. Алф. указ.: с. 727-728. Предм. указ.: с. 729-747. ISBN 978-5-406-02934-3.
- 2. Химия: курс лекций: [гриф МЧС] / Е. Г. Коробейникова [и др.]; ред. В. С. Артамонов. СПб: СПбУ ГПС МЧС России, 2011. 424 с.

Режим доступа: http://elib.igps.ru/?&type=card&cid=ALSFR-4ad9458f-a975-4088-89b2-2aaa3be48098

Дополнительная литература

1. Коробейникова, Елена Германовна. Химия в определениях, таблицах, типовых задачах: учебное пособие: [гриф МЧС]. Ч. І / Е. Г. Коробейникова, Н. Ю. Кожевникова; МЧС России. - СПб.: СПбУ ГПС МЧС России, 2019. - 286 с.

Режим доступа: http://elib.igps.ru/?8&type=card&cid=ALSFR-23308142-6368-45cf-9436-49e14030f4de&remote=false

- 2. Ложкина, Ольга Владимировна. Химическая идентификация и анализ. Химические, физико-химические и физические методы анализа. Учебное пособие / О.В. Ложкина, Е.Г. Коробейникова СПб.: Санкт-Петербургский университет ГПС МЧС России, 2017. 124 с.
- 3. Ложкина, Ольга Владимировна. Экологическая химия: учебное пособие. [гриф МЧС]. / О.В. Ложкина, Е.Г. Коробейникова, В.Н. Ложкин / СПб.: СПбУ ГПС МЧС России, 2019. 208 с. Режим доступа: http://elib.igps.ru/?3&type=card&cid=ALSFR-02d12c6e-c206-44b6-b1af-85d19495751c&query=Ложкина&remote=false
- 4. Ложкина, Ольга Владимировна. Контроль и прогнозирование эффективности управления чрезвычайным воздействием транспорта на городскую среду и население: монография / О.В. Ложкина, В.Н. Ложкин / СПб.: СПбУ ГПС МЧС России, 2020. 220 с. Режим доступа:

http://elib.igps.ru/?6&type=card&cid=ALSFR-68a6a835-31e7-4529-b0ce-5f6b4b8c2af8&query=%D0%9B%D0%BE%D0%B6%D0%BA%D0%B8%D0%BD %D0%B0&remote=false

7.4. Материально-техническое обеспечение

Для проведения и обеспечения занятий используются помещения, которые представляют собой учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащенные оборудованием и техническими средствами обучения: автоматизированное рабочее место преподавателя, маркерная доска, мультимедийный проектор, посадочные места обучающихся.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде университета.

Для проведения лабораторных работ используется лаборатория химии.

Автор: доктор тех. наук, кандидат хим. наук, доцент О.В. Ложкина